Robinsod's XBOX360 Downgrader PoC 

Table of Contents 

Robinsod's XBOX360 Downgrader PoC 1 

Introduction 1 

CB Section 1 

Guessing Algorithm 2 

Prerequisites 2 

Procedure 3 

Downgrader Hardware 3 

Connections to the 360 3 

The Level Shifter 3 

The PIC micro controller 4 

The RS232 level shifter 4 

Data Sheets 4 

Introduction 

In order to downgrade & boot Kernel 2.0.1888 with 1 or more Version Lock Down (VLD) eFuses blown we need to insert the correct VLD value into the pairing data of the CB section. That data and the Southbridge Firmware are HMAC'ed with the CPU key to produce a 16 byte hash that is checked during the boot process (the period when 0x21 is asserted ion the POST bus). If we don't know the CPU key we can't calculate the correct hash 

We can use the "timing attack" to guess the correct hash for the CB section. The timing attack repeatedly tries different values for the first hash byte until it detects that the correct value has been found. The process is then repeated for the remaining 15 hash bytes until the correct hash has been found. 

Once we have downgraded to 2.0.1888 successfully we can upgrade to a vulnerable Kernel (2.0.4532 or 4548) and employ the King Kong shader hack to obtain the CPU fuse data. 

CB Section 

Only the first 0x40 bytes of CB are really interesting to us 

0x00: "CB", length, version... 

0x10: RC4 Key 

0x20: Pairing data 

0x30: The CB Hash - our target 

The Pairing data takes the form 

XX XX XX YY 00 00 00 00 00 00 00 00 00 00 00 00 

Where XX are derived from the CPU key and YY (usually 00) is the VLD we want to patch. YY should be replaced with the highest VLD found in the CF sections from your current flash image. The guessing algorithm will replace the CB Hash and re-encrypt the CB section, calculate the correct ECC bytes and then write the data to flash 

Guessing Algorithm 

The guessing algorithm starts with hash byte 0 (the first one tested by the memcmp function) and tests each value from 0-255 until it determines that the correct hash byte has been selected. It then moves to the next hash byte and repeats the procedure until all 16 hash bytes have been guessed. The algorithm is implemented in C on the host PC and is shown in pseudo code below: 

GuessThreshold[16] = {Values to be found during calibration by Robinsod}; 

CB_File = LoadFile("CB_PATCHED.BIN"); 

TestHash[0.15] = 0x00; 

  For(HashIdx=0;HashIdx<16;HashIdx++) 

   { 

        For(HashValue=0;HashValue<256;HashValue++) 

        { 

        //Insert the new Hash value to try 

        TestHash[HashIdx] = HashValue; 

        //Encrypt the first 16K of the CB section and recalc ECC 

        Patched_CB = CreatePatchedCB(TestHash, CB_File); 

        //Patch the flash 

        Infectus_Erase_Block(0x8400); 

        Infectus_Write_Block(0x8400, Patched_CB); 

        //Now we perform the timing measurement 

        RetryCtr = 0; 

        do 

        { 

           RetryCtr++; 

           //The PIC releases the 360s CPU and makes a measurement 

           Time = PIC_MeasureTiming(); 

           //IF we get a "hit" we will repeat 3 times, avoid false positives 

        }while(Time > GuessThreshold[Hashidx] && RetryCtr < N); 

        if(Time > GuessThreshold[Hashidx] && RetryCtr == N) 

        { 

          //We found it! Inform user, next byte 

          printf("Hash byte[%02X] == %02X\n",HashIdx,HashValue); 

          break; 

          } 

        } 

printf("Hash Guess Complete [%02X ... %02X]\n",TestHash[0] ... TestHash[15]); 

Timing Measurement 

The 16F876A features a 16 bit counter (TIMER 1, driven by the system clock) and 2 CCP (Capture, Compare, PWM) modules. The “capture mode” can generate an interrupt on the PIC when an event occurs. I use the positive going edge of CE (there appear to be 2 CE events per boot attempt) to generate an interrupt on the PIC and reset TIMER 1. Then it is simply a case of waiting for the end of hashing (POST port 0x21 -> 0xA4 or 0x22), reading the TIMER 1 module and reporting that value to the PC. 

The PIC source code (POST3.c) is included elsewhere , I use CCSC

Prerequisites 

1) An xbox360 with infectus installed 

2) A valid flash dump 

3) Robinsod's NAND tool 

4) Downgrader hardware (see below) 

5) ? 

Procedure 

1) Open your flash dump using the NAND tool, make a note of the VLD of your CF section(s) 

2) Extract the Cx sections to your HDD, we only need the CB section 

3) Rename the CB section "CB.BIN" and edit in WinHex/Hex Workshop 

4) Identify the Pairing data in your CB section, insert the highest (or only) VLD into the pairing data. 

5) Save the file as "CB_PATCHED.BIN" 

6) TBD 

Downgrader Hardware 

The hardware is made of 3 basic elements, a level shifter, a PIC microcontroller and a RS232 level shifter 

Connections to the 360 

The following connections are required: 

Name 
Number of Signals 
Direction 
Levels 
Comment 

POST Port[0..7] 
8 
In 
0 & 1.0V 


JTAG Reset 
1 
Out 
0 & Z 


NAND CE 
1 
In 
0 & 3.3V 


360 CPU UART 
2 
In/out 
0 & 3.3V 


Power 
2 
In 
0 & 3.3V 


Total 
14 




Making a total of 14 connections (we can reduce that to 8 later). I use a 16 way IDC header (like the 40 way headers on HDD and DVD drives) and use the spare connections as additional grounds. Pin out is: 

IDC Header
Signal
Connection
IDC Header 
Signal 
Connection 

1
POST[0]
See image below
2
POST[1] 
See image below 

3
POST[2] 
See image below 
4
POST[3] 
See image below 

5
POST[4] 
See image below 
6
POST[5] 
See image below 

7
POST[6] 
See image below 
8
POST[7] 
See image below 

9
GND
See image below 
10
3.3V
See image below 

11
360 CPU Rx
J2B1 Pin 2
12
360 CPU Tx 
J2B1 Pin 1

13
3.3V
J2B1 Pin 7
14
GND 
J2B1 Pin 12*

15
JTAG Reset
J8C1 Pin2
16
NAND CE


TMF posted this handy image of the POST port but its easier on the flip side:

[image: image1.jpg]POST-BUS ROER » »—e et |




 

The Level Shifter 

This is built around 2 LM339s, POST port[0..3] is connected to the first LM339, POST port[4..7] is connected to the second LM339. A simple potential divider is sufficient to supply all 8 comparators with a reference voltage with a VRef of 0.55V when VSupply = 3.3V. 

The PIC micro controller 

I am using the PIC 16F876A. I only used this one because I happen to have some available, a smaller, cheaper PIC can be selected later (especially if we go to an 8 connection design later) 

The micro controller core is very simple. 

MCLR (pin 1) is pulled high via a 10K resistor. Also connected to MCLR is a "push to make" switch that can momentarily connect MCLR to GND. This is the reset circuit. 

For a 20MHz clock we have a choice a 3 pin ceramic resonator or an XTAL and 2 * 22pf capacitors connected to OSC1 (pin 9) and OSC2 (pin 10). i think the resonator will be good enough and its cheaper than a XTAL plus it removes the 22pf caps. I will test both solutions but I think the resonator is the best 

The NAND Flash CE line is directly connected to CCP1 (pin 13) of the PIC 

The JTAG Reset line is is directly connected to RC0 (pin 11) of the PIC 

It may be that a series resistor of a few 10s of ohms would be a good idea to prevent excessive current draw, what do you think? 

The output of the level shifter circuit (PIC B[n]) is connected to RB[0.7] (pins 21-28). The data sheet for the LM339 recomends 3K pullups but 1K seems to work OK.

Tx & Rx (pins 18 & 17) are connected via jumpers to the SIPEX3232. I want to use jumpers here so that the level shifter can be shared between the PIC and the 360s CPU UART (then the user can downgrade to 4532 and get their keys without more wiring) 

A simple bootloader is available form Microchip that should be programed into the PIC initially, after that all programming can be down via serial port 

The RS232 level shifter 

A very simple circuit built around the SIPEX3232, MAX3232 or ST3232 

A couple of jumpers would allow us to connect the PIC or the 360s UART to the level shifter. 

Data Sheets 

LM339 
http://www.national.com/mpf/LM/LM339.html 
Quad Comparator 

PIC 16F876A 
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1335&dDocName=en010240 
PIC Micro Controller 

SIPEX 3232 
http://www.sipex.com/productDetails.aspx?varpart=SP3232EUCP-L 
RS232 Level Shifter 

MAX 3232 
http://www.elfa.se/elfa-bin/dyndok.pl?dok=2013425.htm 
RS232 Level Shifter 

ST 3232 
http://www.elfa.se/elfa-bin/dyndok.pl?dok=4842.htm 
RS232 Level Shifter 

Initial Test & Setup 

The POST port and RS232 level shifters are easy to "module test". The PIC should be initially loaded with a bootloader, you can get it from Microchip:

http://www.microchipc.com/PIC16bootload/ 

The PIC should just work :) Get it talking to the programmer app and load the "post3.hex" file. 


Once loaded,

1) Connect the downgrader hardware to the 360 (360 power off)
2) Connect a terminal app to the PIC (19200,8N1)
3) Power on / reset the PIC
4) Power on the 360 The 360s CPU is free to run normally
5) Send a 'b' the PIC responds'Degraded 1.0 :' At this point the 360 CPU is held in reset via the JTAG interface
6) Send a 'm' the PIC releases the 360s CPU and performs one measurement, the 360s CPU is then held in reset again
7) The PIC sends a 6 byte result

You can repeat steps 6 & 7 ad infinitum. Step 5 is there in case the 360 needs time to boot before being reset, this seems not to be the case and it will probably be removed. The PIC will detect POST changing from 0x21 and react differently depending on the POST code 

· 0xA4 (hash fail) PIC sends the 4 digit hex timing measurement followed by "\n\r"

· 0x22 or 0x2F (hash pass) The PIC sends "BOOT\n\r" since the timing attack fails for the final byte of the hash 

· Any other POST code causes the PIC to send "E XX\n\r" Where XX is the POST code 


Occasionally random timing values are returned, they are so infrequent I think we can filter & discard them.  

BOM 

R1-8,10-18,20=21        1K
R9                                 4K7
R19                               10K

C1-2                              22pF 

C3-6                              100nF


XTAL                            20MHz Crystal

D1-2                              LED

IC1-2                             LM339
IC3                                 PIC16F876
IC4                                 SIPEX3232

J1                                 16 Way IDC Header
J2                                 9 Way Female D Type

